
GigaScience

Genome Annotation Generator: A simple tool for generating and correcting WGS
annotation tables for NCBI submission

--Manuscript Draft--

Manuscript Number: GIGA-D-17-00030

Full Title: Genome Annotation Generator: A simple tool for generating and correcting WGS
annotation tables for NCBI submission

Article Type: Technical Note

Funding Information: Agricultural Research Service Dr Scott M Geib

Abstract: One of the most overlooked, yet critical components of a whole genome sequencing
project is the submission and curation of the data to a genomic repository, most
commonly NCBI. While large genome centers or genome groups have developed
software tools for post-annotation assembly filtering, annotation, and conversion into
NCBI's annotation table format, these tools typically require back-end setup and
connection to an SQL database and/or some knowledge of programming (Perl,
Python) to implement. With whole genome sequencing becoming commonplace,
genome sequencing projects are moving away from the genome centers, and into the
ecology or biology lab, where much less resources are present to support the process
of genome assembly curation. To fill this gap, we developed software to assess, filter,
transfer annotations, and convert a draft genome assembly and annotation set into
NCBI annotation table (.tbl) format, facilitating submission to NCBI Genome Assembly
database. This software has no dependencies, is compatible across platforms, and
utilizes a simple command line to perform a variety of simple and complex post-
analysis, pre-NCBI submission WGS project tasks.

Corresponding Author: Scott M Geib

UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Scott M Geib

First Author Secondary Information:

Order of Authors: Scott M Geib

Brian Hall

Theodore DeRego

Sheina B Sim

Order of Authors Secondary Information:

Opposed Reviewers:

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
http://www.biomedcentral.com/about/editorialpolicies#DataandMaterialRelease
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Genome Annotation Generator: A simple tool for
generating and correcting WGS annotation tables for

NCBI submission
Scott M. Geib 1∗†, Brian Hall 2†, Theodore Derego 1, and Sheina B. Sim 1,2

1Tropical Plant Protection Research Unit, USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center,
Hilo, HI, 96720, USA

2Plant and Environmental Protection Science, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
*Corresponding author †Authors contributed equally

email: SMG: scott.geib@ars.usda.gov BH:bhall7@hawaii.edu TD:t.derego@yahoo.com SBS:sheina.sim@ars.usda.gov

February 8, 2017

Abstract

Background
One of the most overlooked, yet critical components of a whole genome sequencing
project is the submission and curation of the data to a genomic repository, most
commonly NCBI. While large genome centers or genome groups have developed
software tools for post-annotation assembly filtering, annotation, and conversion
into NCBI’s annotation table format, these tools typically require back-end setup
and connection to an SQL database and/or some knowledge of programming (Perl,
Python) to implement. With whole genome sequencing becoming commonplace,
genome sequencing projects are moving away from the genome centers, and into
the ecology or biology lab, where much less resources are present to support the
process of genome assembly curation. To fill this gap, we developed software to
assess, filter, transfer annotations, and convert a draft genome assembly and an-
notation set into NCBI annotation table (.tbl) format, facilitating submission to
NCBI Genome Assembly database. This software has no dependencies, is compat-
ible across platforms, and utilizes a simple command line to perform a variety of
simple and complex post-analysis, pre-NCBI submission WGS project tasks.
Findings
The Genome Annotation Generator is a consistent and user-friendly bioinformatics
tool that can be used to generate a .tbl file that is consistent with the NCBI sub-
mission pipeline.
Conclusions
The Genome Annotation Generator achieves the goal of providing a publicly avail-
able tool that will facilitate the submission of annotated genome assemblies to NCBI.

1

Manuscript Click here to download Manuscript genome-annotation-
generator.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/giga/download.aspx?id=9363&guid=4f9392f2-02a7-49c6-86bd-4e130a101dd8&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=9363&guid=4f9392f2-02a7-49c6-86bd-4e130a101dd8&scheme=1

It is useful for any individual researcher or research group who wishes to submit a
genome assembly of their study system to NCBI.

Keywords: Genome curation; annotation; and whole-genome sequencing project

1 Introduction

While ever-improving sequencing technology and assembly software enable the collection
of raw sequences for genome assembly and structural annotation, further steps need to
be taken to ensure the quality and completeness of a WGS project for submission to the
National Center for Biotechnology Information (NCBI) or other data repositories [32]. To
submit a genome to the NCBI for curation, it must be converted to the NCBI annotation
table format (.tbl). With a genome assembly project consisting of thousands of sequences
demarcated by hundreds of thousands of structural annotations, this task clearly requires
automation. However, there is currently no freely available tool which performs rapid and
controlled conversion of a genome assembly and associated structural annotations into a
.tbl format in addition to allowing for editing, modification, and revision of the content of
the project. Moreover, the typical assembly and draft annotation contains some degree
of questionable or erroneous data which requires correction or omission. It may also
be desirable to add functional annotations to the submission and integrate results from
InterProScan, BLAST homology to curated databases, or ontology terms generated by
other tools [33, 5, 17].

The traditional approach used to address these problems is to use Linux command
line tools or write custom scripts which modify and filter the genome using a scripting
language such as Perl or Python [4, 28, 12] or large scale genomic database systems [20].
This method may not be easily or readily reproducible, or it may be entirely beyond the
ability of an investigator who has less familiarity with generating custom scripts de novo.
Even amongst those researchers who use best practices to write clean, well-tested, and
reusable scripts to accomplish these tasks, doing requires a large amount of duplicated ef-
fort. For this reason, the Genome Annotation Generator (GAG) was written to provide a
straightforward and consistent tool for addressing the most common errors in genome as-
semblies, adding functional annotations from disparate sources, and producing an NCBI
submission-ready annotation .tbl file. In addition, the software provides a means for
integrating existing functional annotations and marking annotations that require man-
ual curation or review. All of these tasks are done through an intuitive command line
program, a friendly user-interface, and has no required dependencies or packages. The
program GAG facilitates the submission of whole genome sequencing (WGS) projects
to NCBI as well as provide a standardized utility and workflow that fosters consistency
between projects. Due to emerging genome sequencing initiatives such as the 5,000 Insect

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Genomes Initiative (i5K), the Plant Genome Initiative, and Genome 10K [22, 21], many
independent research groups which are not specialized in genome annotation and analysis
are generating large genomic datasets and performing genome sequencing projects within
their lab. This program can assist in ensuring quality and consistency of data for new
genome biologists.

2 Overview

The GAG program is a command line python program, written in python 2.7 and re-
quiring no additional outside programs or packages to run. The user directs the program
to the genome .fasta file and a .gff3 file containing structure annotations. In addition, a
number of flags can be used to fix possible errors, flag or remove features based on selected
criteria, add functional annotations, trim regions of the genome out of the assembly, and,
of course, write the genome to NCBI .tbl file format. In addition, changes made to the
genome annotation, functional annotations added, or flags requesting manual review are
also annotated back to the GFF3 structural annotation file, and the original fasta file
is corrected as needed. When the user issues commands to modify the genome, e.g. to
remove short introns, the statistics will display two columns, representing the original
and modified genomes. This allows for stepwise and documented filtering and review
to occur, and interactions between GAG and visual genome review tools (e.g. Artemis,
Apollo, Gbrowse) [31, 25, 16, 27, 24].

3 Methods

As an example, we consider a possible work-flow for a user wishing to prepare a genome
for submission to the NCBI Eukaryotic WGS Database. She has a scaffolded genome
assembly produced by one of many whole genome assemblers [2, 13, 26] in .fasta file
format and a corresponding GFF3 feature file [8, 7] containing structural annotations
resulting from an automated annotation pipeline or predictors such as Maker, Evidence
Modeler, Jigsaw, or others e.g. [3, 15, 1, 14, 29, 30, 6, 9]. The approach would be to
first possibly generate functional annotations of predicted genes if this is desired, using
whatever approach the user is interested in, and then using the genome and annotations
with GAG. After using GAG to remove or flag features of interest, she then may then
further investigate flagged features in a genome browser by loading the output of GAG,
edit, and then perform further filtering in GAG, and iterate through this process until
a final draft genome product is generated. Finally GAG writes a NCBI table file, on
which tbl2asn is run for submission to NCBI. This may identify regions of the genome
that need to be trimmed, due to possible adapter contamination in the genome, or low
quality sequence. Any errors generated by tbl2asn can then be corrected in GAG, the

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

genome trimmed, until an error free submission is generated.
To use GAG, she creates a folder containing the genome files (or links to them)

and runs gag.py from the terminal, with the .fasta and .gff3 files. GAG will write a
statistics file, containing infomraiton on the number of each feature type, lengths, and
other information that may be useful for the submitter. In our experience, automated
genome annotation software frequently produces assemblies containing introns as short
as 1 base pair long; if any such features are present, GAG will detect them. It is common
for NCBI to request that genes containing short introns be removed or modified, and
GAG can be used to do this. To address these short introns, the user simply applies
flag -ris (Remove_Intron_Shorter_Than) with a value of 10. GAG will discard any
mRNA containing an intron shorter than the minimum of ten. A comparison of the
genome content before and after removal is printed to the .stats file. If she instead wishes
to only flag features that meet this criteria and not remove them, alternatively the -fis
(Flag_Introns_Shorter_Than) flag could be used, which instead adds a GAG_FLAG
feature to the attributes column of the .gff3 file describing the reason for flagging, allowing
manual review of flagged features in a genome browser. GAG will automatically update
all parent and child features (gene or CDS entries) to reflect removal of mRNA features.
A list of available flag or removal options are listed in Table 1.

Another review for submission might be that all coding regions be a minimum length.
For this example we use 150 base pairs in length, which is suggested by NCBI [10, 11].
The to add this additional level of filtering, a second flag can be used: -rcs 150, to
Remove_CDS_Shorter_Than 150 bp. When the genome is written to the output folder,
GAG will write a file called genome.removed.gff containing all the features left out of the
final version.)

GAG supports two straightforward correction, or fix tools. If the user’s GFF3 file
does not explicitly indicate the presence of start and stop codons, or if there is reason to
believe there are errors in ORF prediction, GAG can calculate start and stop locations.
The user simply issues the command with the flag –fix_start_stop and these features
will be added to the GFF3 file, and their existence noted in the table file. A second
issue that can arise in a draft genome assembly is for a contig or scaffold to have a string
of ambiguous bases (N’s) at the very beginning or end of the contig. These should be
removed from the assembly, and can be using the –fix_terminal_ns flag, as they can be
mis-interpreted as scaffold gaps. Removing these regions from the genome though, will
disrupt the parity between coordinates in the .fasta genome file and the .gff3 annotation
file. GAG will automatically update coordinates in the .gff3 file to reflect any regions
removed from the sequence file. In addition, it may be identified that regions of the
genome may be contaminated with microbial, vector, or sequencing adapter sequence,
particularly identified during the "contaminate screen" performed during execution of
tbl2asn and NCBI quality checking. A .bed formatted file can be supplied with teh -

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

trim flag, containing regions of the assembly to exclude, either ranges within a contig or
scaffold, or an entire scaffold. GAG will update both the .fasta and .gff3 files so that
coordinate are still synchronized. This is a particularly difficult operation to perform
without a specialized tool.

At present, GAG has simple commands to remove or flag introns, exons, coding regions
and genes based on minimum or maximum lengths, which will also edit or remove any
parent or child feature from the annotation file so as not to create incomplete feature
annotations. It can also remove features from a list, which is useful for cases where
a genome submission is rejected and a list of invalid mRNAs and genes provided. In
addition, all discarded features are retained in a “genome.removed.gff” file and the entire
editing session is documented so that the user can retain the filtering criteria used on the
particular dataset.

GAG supports two methods to add functional annotations to a genome. First, it can
read an annotated GFF3 file containing gene names, protein products, cross-references
to databases, and ontology terms following GFF3 qualified nomenclature in the attribute
column of the GFF3 file [19, 18, 23]. Any annotations present will be automatically carried
over to the NCBI feature table file. For users with annotations from another source, GAG
can read them from a simple tab-delimited file. The annotations supported by the current
version of GAG are Name (for genes), Dbxref, Ontology_term and product (for descriptive
mRNA products). These are also written to a new GFF3 file, so GAG can be utilized as
a tool to also functionally annotate a GFF3 file. Detailed instructions for running GAG,
examples, as well as formats and conversion tools for functional annotations are available
on the GAG software website webpage: http://genomeannotation.github.io/GAG/.

4 Implementation

GAG is written in Python 2.7. It has no dependencies beyond the standard library. The
program is modular, abstracting biological concepts such as Sequence, Gene and CDS
into classes which may be incorporated into other software tools. In addition, the code
is covered by a suite of unit and integration tests, allowing developers to modify or add
to the code base with reduced risk of introducing errors. It should be easily executable
by the novice programmer, but also powerful enough to be implemented within robust
genome processing pipelines.

5 Conclusion

GAG can be easily expanded in the future to support more specific needs of researchers,
less common annotation types, and integrate conversion of common functional annotation
output formats (e.g. InterProScan, BLAST, Blast2Go) for addition to NCBI annotation

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://genomeannotation.github.io/GAG/

table formats. Currently, GAG is an intermediate, but critical tool, between a simple
format conversion tool and more sophisticated annotation editors. In future developments
of GAG, we plan to allow the integration of multiple lines of evidence supporting gene
models to help users discriminate apparently high quality annotations from annotations
with little support or possible errors. This could rapidly improve and standardize manual
annotation efforts in systems and user groups that are not integrated into genome center
annotation pipelines.

6 Declarations

6.1 Competing Interests

The authors declare that they have no competing interests

6.2 Funding

Funding for this project was provided by USDA-ARS and USDA-APHIS Farm Bill Section
10007 projects 3.0251.02 (FY 2014), 3.0256.01 (FY 2015), 3.0392.02 (FY 2016).

6.3 Authors’ contributions

SMG conceived software concept. BH, TD, and SMG designed and wrote software. BH,
SMG, and SBS wrote manuscript.

6.4 Acknowledgements

We thank S. Gayle, B. Calla, and others for assisting in beta testing of the software and
making test datasets available to us. Bioinformatic analysis to develop test datasets for
GAG was performed on computing resources at USDA-ARS Pacific Basin Agricultural
Research Center (Moana cluster; Hilo, HI) and the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by National Science Foundation
grant number OCI-1053575XSEDE utilizing allocation TG-MCB140032 to S.M.G. Opin-
ions, findings, conclusions, or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the USDA. USDA is an equal
opportunity provider and employer

References

[1] Jonathan E. Allen and Steven L. Salzberg. Jigsaw: integration of multiple sources
of evidence for gene prediction. Bioinformatics, 21(18):3596–3603, 2005.

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1: Options for GAG
Option Type of function Description
-a <annotation file> Annotate Adds functional annotations present in

annotation file to .gff and .tbl
-t <.bed file> Trim Removes regions of genome indicated in

.bed file from .fasta and .gff3
-fix_start_stop <no value> Fix Adds or corrects start and stop codon

features to .gff3
-fix_terminal_ns <no value> Fix Removes any trailing ends from contig

ends in assembly, updates .gff3 coordi-
nates

-rcs <integer> Remove Remove CDS shorter than <integer>
-rcl <integer> Remove Remove CDS longer than <integer>
-res <integer> Remove Remove exons shorter than <integer>
-rel <integer> Remove Remove exons longer than <integer>
-ris <integer> Remove Remove introns shorter than <integer>
-ril <integer> Remove Remove introns longer than <integer>
-rgs <integer> Remove Remove genes shorter than <integer>
-rgl <integer> Remove Remove genes longer than <integer>
-fcs <integer> Flag Remove CDS shorter than <integer>
-fcl <integer> Flag Remove CDS longer than <integer>
-fes <integer> Flag Remove exons shorter than <integer>
-fel <integer> Flag Remove exons longer than <integer>
-fis <integer> Flag Remove introns shorter than <integer>
-fil <integer> Flag Remove introns longer than <integer>
-fgs <integer> Flag Remove genes shorter than <integer>
-fgl <integer> Flag Remove genes longer than <integer>

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[2] J. Butler, I. MacCallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte, E. S. Lander,
C. Nusbaum, and D. B. Jaffe. Allpaths: de novo assembly of whole-genome shotgun
microreads. Genome Res, 18(5):810–20, 2008.

[3] Brandi L. Cantarel, Ian Korf, Sofia M. C. Robb, Genis Parra, Eric Ross, Barry
Moore, Carson Holt, Alejandro Sanchez Alvarado, and Mark Yandell. Maker: An
easy-to-use annotation pipeline designed for emerging model organism genomes.
Genome Research, 18(1):188–196, 2008. Times Cited: 80.

[4] Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J. Cox,
Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczyn-
ski, and Michiel J. L. de Hoon. Biopython: freely available python tools for com-
putational molecular biology and bioinformatics. Bioinformatics, 25(11):1422–1423,
2009.

[5] Ana Conesa, Stefan Götz, Juan Miguel Garćıa-Gómez, Javier Terol, Manuel Talón,
and Montserrat Robles. Blast2go: a universal tool for annotation, visualization and
analysis in functional genomics research. Bioinformatics, 21(18):3674–3676, 2005.

[6] Val Curwen, Eduardo Eyras, T. Daniel Andrews, Laura Clarke, Emmanuel Mongin,
Steven M.J. Searle, and Michele Clamp. The ensembl automatic gene annotation
system. Genome Research, 14(5):942–950, 2004.

[7] K. Eilbeck and S. E. Lewis. Sequence ontology annotation guide. Comp Funct
Genomics, 5(8):642–7, 2004.

[8] Karen Eilbeck, Suzanna Lewis, Christopher Mungall, Mark Yandell, Lincoln Stein,
Richard Durbin, and Michael Ashburner. The sequence ontology: a tool for the
unification of genome annotations. Genome Biology, 6(5):R44, 2005.

[9] Christine Elsik, Aaron Mackey, Justin Reese, Natalia Milshina, David Roos, and
George Weinstock. Creating a honey bee consensus gene set. Genome Biology,
8(1):R13, 2007.

[10] National Center for Biotechnology Information. The genbank submissions handbook
[internet], 2011.

[11] National Center for Biotechnology Information. Common discrepancy reports, Jan-
uary 2013.

[12] Robert Gentleman, Vincent Carey, Douglas Bates, Ben Bolstad, Marcel Dettling,
Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff Gentry, Kurt
Hornik, Torsten Hothorn, Wolfgang Huber, Stefano Iacus, Rafael Irizarry, Friedrich
Leisch, Cheng Li, Martin Maechler, Anthony Rossini, Gunther Sawitzki, Colin

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Smith, Gordon Smyth, Luke Tierney, Jean Yang, and Jianhua Zhang. Bioconductor:
open software development for computational biology and bioinformatics. Genome
Biology, 5(10):R80, 2004.

[13] Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe J. Ribeiro, Joshua N.
Burton, Bruce J. Walker, Ted Sharpe, Giles Hall, Terrance P. Shea, Sean Sykes,
Aaron M. Berlin, Daniel Aird, Maura Costello, Riza Daza, Louise Williams, Robert
Nicol, Andreas Gnirke, Chad Nusbaum, Eric S. Lander, and David B. Jaffe. High-
quality draft assemblies of mammalian genomes from massively parallel sequence
data. Proceedings of the National Academy of Sciences, 108(4):1513–1518, 2011.

[14] Brian Haas, Steven Salzberg, Wei Zhu, Mihaela Pertea, Jonathan Allen, Joshua
Orvis, Owen White, C Robin Buell, and Jennifer Wortman. Automated eukary-
otic gene structure annotation using evidencemodeler and the program to assemble
spliced alignments. Genome Biology, 9(1):R7, 2008.

[15] Carson Holt and Mark Yandell. Maker2: an annotation pipeline and genome-
database management tool for second-generation genome projects. Bmc Bioinfor-
matics, 12, 2011.

[16] SE Lewis, SMJ Searle, N Harris, M Gibson, V Iyer, J Richter, C Wiel, L Bayrak-
taroglu, E Birney, MA Crosby, JS Kaminker, BB Matthews, SE Prochnik, CD Smith,
JL Tupy, GM Rubin, S Misra, CJ Mungall, and ME Clamp. Apollo: a sequence an-
notation editor. Genome Biology, 3(12):research0082.1 – 0082.14, 2002.

[17] Michele Magrane and UniProt Consortium. Uniprot knowledgebase: a hub of inte-
grated protein data. Database, 2011, 2011.

[18] Barry Moore, Guozhen Fan, and Karen Eilbeck. Soba: sequence ontology bioinfor-
matics analysis. Nucleic Acids Research, 38(suppl 2):W161–W164, 2010.

[19] Christopher J. Mungall, Colin Batchelor, and Karen Eilbeck. Evolution of the
sequence ontology terms and relationships. Journal of Biomedical Informatics,
44(1):87–93, 2011.

[20] Christopher J. Mungall, David B. Emmert, and The FlyBase Consortium. A chado
case study: an ontology-based modular schema for representing genome-associated
biological information. Bioinformatics, 23(13):i337–i346, 2007.

[21] Genome 10K Community of Scientists. Genome 10k: A proposal to obtain whole-
genome sequence for 10,000 vertebrate species. Journal of Heredity, 100(6):659–674,
2009.

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[22] M. Poelchau, C. Childers, G. Moore, V. Tsavatapalli, J. Evans, C. Y. Lee, H. Lin,
J. W. Lin, and K. Hackett. The i5k workspace@nal-enabling genomic data ac-
cess, visualization and curation of arthropod genomes. Nucleic Acids Research,
43(D1):D714–D719, 2015.

[23] Martin Reese, Barry Moore, Colin Batchelor, Fidel Salas, Fiona Cunningham, Gabor
Marth, Lincoln Stein, Paul Flicek, Mark Yandell, and Karen Eilbeck. A standard
variation file format for human genome sequences. Genome Biology, 11(8):R88, 2010.

[24] J. T. Robinson, H. Thorvaldsdottir, W. Winckler, M. Guttman, E. S. Lander,
G. Getz, and J. P. Mesirov. Integrative genomics viewer. Nat Biotechnol, 29(1):24–6,
2011.

[25] K. Rutherford, J. Parkhill, J. Crook, T. Horsnell, P. Rice, M. A. Rajandream,
and B. Barrell. Artemis: sequence visualization and annotation. Bioinformatics,
16(10):944–5, 2000.

[26] Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein, Steven J.M.
Jones, and Inanc Birol. Abyss: A parallel assembler for short read sequence data.
Genome Research, 19(6):1117–1123, 2009.

[27] Mitchell E. Skinner, Andrew V. Uzilov, Lincoln D. Stein, Christopher J. Mungall,
and Ian H. Holmes. Jbrowse: A next-generation genome browser. Genome Research,
19(9):1630–1638, 2009.

[28] Jason E. Stajich, David Block, Kris Boulez, Steven E. Brenner, Stephen A. Chervitz,
Chris Dagdigian, Georg Fuellen, James G.R. Gilbert, Ian Korf, Hilmar Lapp, Heikki
Lehväslaiho, Chad Matsalla, Chris J. Mungall, Brian I. Osborne, Matthew R.
Pocock, Peter Schattner, Martin Senger, Lincoln D. Stein, Elia Stupka, Mark D.
Wilkinson, and Ewan Birney. The bioperl toolkit: Perl modules for the life sciences.
Genome Research, 12(10):1611–1618, 2002.

[29] Mario Stanke, Oliver Schoffmann, Burkhard Morgenstern, and StephanWaack. Gene
prediction in eukaryotes with a generalized hidden markov model that uses hints from
external sources. BMC Bioinformatics, 7(1):62, 2006.

[30] Mario Stanke and Stephan Waack. Gene prediction with a hidden markov model
and a new intron submodel. Bioinformatics, 19(suppl 2):ii215–ii225, 2003.

[31] Lincoln D. Stein, Christopher Mungall, ShengQiang Shu, Michael Caudy, Marco
Mangone, Allen Day, Elizabeth Nickerson, Jason E. Stajich, Todd W. Harris, Adrian
Arva, and Suzanna Lewis. The generic genome browser: A building block for a model
organism system database. Genome Research, 12(10):1599–1610, 2002.

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[32] Mark Yandell and Daniel Ence. A beginner’s guide to eukaryotic genome annotation.
Nature Reviews Genetics, 13(5):329–342, 2012.

[33] Evgeni M. Zdobnov and Rolf Apweiler. Interproscan – an integration platform for
the signature-recognition methods in interpro. Bioinformatics, 17(9):847–848, 2001.

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

